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The games problem of the convergence of quasilinear objects with restrictions on the 

instantaneous values of the controlling forces is considered. It is shown that in regular 

situations the extremal strategies yield the saddle point of the game in question. An 

iterative method for constructing the extremal strategies is described. 

1, Statement of the problem, Let the controlled objects be described by 

the differential equations 

y’ = A’l’(t)y + B”‘(t) U + hf”’ (y, t) (1.1) 

2. = A@) (t) 2 + BC2) (t) v + hfC2’ (2, t) (1.2) 

Here y = {yr, . . . . y,) is the n-dimensional vector of the phase coordinates of the 

pursuing object; z = {zr, . . . . z,} is the n -dimensional vector of the phase coordinates 

of the pursued object (target); u = {or, . . . . z&}, u = {vr, . . . . v,} are P -dimen- 

sional vector functions describing the forces controlling the pursuing and pursued objects, 
respectively ; AU) and Bcj) are matrices of the appropriate dimensions which are con- 

tinuous in t ; p) (y, t) and ps) (z, t) are vector functions continuous in t and twice 

continuously ditierentiable with respect to y and z for y E rr, z E r2, where l’, and 

r2 are some closed bounded domains; A (h > 0) is a small parameter. 

Let us consider the motion of the objects over a finite time interval t, < t < 9 . 
The controlling forces u and 2~ are subject to the instantaneous restrictions u [t]E U* , 
?I (11 E T/‘*. The sets u* and v* of the vectors u and n are described by the inequal- 

ities 
II u [tl II & c1, II u PI II < v (p, v = const) (1.3) 

The symbol II z II here and everywhere below denotes the Euclidean norm of the vec- 

tor x. 
We define the cost of the game as the quantity 

y PI = II {Y [~lh - (2 rmnll 0.4) 
where {x},,, is the vector consisting of the m first components of the vector x. The 

quantity y [8] estimates the distance between the objects at the final instant 8. The 
task of the pursuer is to minimize y [&I; the task of the target (pursued object) is to 
maximize y [&I. 

Games convergence problems have been investigated by several authors (e. g. see 
n-51). Our purpose in the present study is to justify the extremal construction [4, 51 

in the case of quasilinear systems with restrictions (1.3) imposed on the controlling for- 
ces. We shall make extensive use of the definitions and constructions of [4,5] ; for this 
reason we shall often omit relevant remarks concerning these constructions and the quan- 
tities occurring in them. 
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Let us assume that the pursuer and target know the realized values of y [t] and z [tJ 

at each instant t and that the controlling forces are generated by the feedback principle, 

i.e. that the realized values of u [t] and u It] at each instant t are generated on the 
basis of information on the quantities y [t] and z [t]. 

We define the strategy U (or v) of the players as the totality of sets U* (t, y, I, A) 

(or V* (1, y, 2, A)) consisting of r-dimensional vectors u (or V) which are associated 
with each possible position {t, y, z}. The realizations u [t] (or v[t]) then satisfy the 
following requirements : 

a) the inclusion 

24 ]tl E u* (rt, y [tl, 2 [tl, IL) ( or u ItI E V* (t, y [tl, 2 [tl, h)) (1.5) 

must be fulfilled for every t ; 

b) the function u [t] (or JI [t]) must be integrable over the time interval 
t, < t < 8. 

A strategy U defined by the sets U* (t, y, z, h) (a strategy I’ defined by the sets 
v* (t, y, Z, h)) will be called “permissible” if the totality of these sets satisfies the 
following conditions : 

1) the inclusions 

are fulfilled ; 
u* (t, y, 2, a) C u* (V* (t, y, 2, 3L) t’ V*) 

2) the sets U* (t, y, z, h) (V* (t, y, z, h)) are closed and convex; 

3) the sets U* (t, y, z, A,) (V* (t, y, z, A)) for ?L < h, (&, is sufficiently 
small) are semicontinuuusabove the inclusion as t, y and z vary in the neighborhood 

of each possible position. 
Let us suppose that the first and second players have chosen some permissible strate- 

gies U and V. We define the solution of Eqs. (1.1) and (1.2) under controls u E U* 

(t, y, z, A.), v E V* (t, y, z, h) (in the interval t, < t & ts) as any absolutely con- 
tinuous vector functions y [t] and z [t] which satisfy the equations 

y’ [tl = A(‘) @)y PI + B(1) (q.4 ItI + ap (y PI, t) 

2’ [ t1 = A@) (t)z [tl + B@) (t)v It1 + hJ@) (2 [tl, t) 

for almost all values t E [tt, ts] . Here the vector functions u [t] and u [f]~ satisfy 
condition (1.5). Given solutions y [t] and z [t] can be called the “motions” of systems 

(1. l), (1.3) generated by the strategies U and P. 
Let (y [8J 1 t,, y,, zo, u, v) be the realization of the quantity y [a] (1.4) which 

corresonds to the initial position t,, y, E rIo c rl, z,, E rzo c r2 under the con- 

trols u and 21. 

Problem 1.1. We are to find that optimal strategy u” from among the permis- 

sible strategies u which satisfies the inequality 

(r [tt] 1 t,, y,, zo, U”, u) & min sup inf (Y 161 I to, Yo, 20, UP VI 
U u[tl v[Q 

for any initial position to, y,, z. (y, E ho, z. E r20r Og t0 -C 6). 
Problem 1.2. We are to find that optimal strategy v from among the permis- 

sible strategies v which satisfies the inequality 

(r [fl,l I to, Yo, 201 u, v”) > max inf w (7 [@I I to, Y,, zo, 4 V) 
v u[f] z[t] 



On the convergence of quasilinear objects 553 

for any initial position t,, y,, z. (go e I?;, z. E r;, 0 < to i 6). 

2. Anclllrry 8tatsmsnt. Let us consider the controlled system 

ax/& = A (r)x + B (z) w + hf (XV z) (2.1) 

Let the control w (7) ft < z Q e) be subject to the restriction 

II w @) II d 5 (+const) (2.2) 

Let us take an arbitrary m-dimensional unit vector 1(114[ = i) and denote by z (z; w) 

(t d x < 6) the motion of system (2.1) generated by some control w (z) (t < r < 6) 

restricted by inequality (2.2) under the initial condition r = t, z (f; w) = z. 

Now let us consider the problem of constructing a control UP (i) (t < T < 8) satisq- 

ing the condition (2.3) 
I0 

Let 

p [I, t, 5, h] =,,ma& l’{z(t-t; w)), = Z’{z” (6; we)), 

da&k = do (i; 1, t, x, A) &x (2.4) 

be a system of equations in variations constructed for system (2.1) along the motion 

5’ (z; 1;“). Here the matrix A0 is defined by the equation A” = A + A’“‘, and the ele- 
ments a(!’ of the matrix d(O) u are defined by the relations 

,\g,(,;1, t,t,h)=haf*(z"(i~w"),z)/ax j 

Let us denote the fundamental matrix of system (2.4) by x [f.t, 7; 1, t, zr h] 

(X [z, t; 1, t, 2, A] = E). Let the following conditions be ful‘filied : 
2.1. Every motion of the first-approximation system 

dx/& = A (7) z+ B (r) i.u (2.5) 

generated by the control w (z) (11 w @)I] d 5, t < z < 9) under the initial condition 

z = t, x (t) = I lies entirely in the domain of definition of the function f (z, 7). 
2.2. Let X(O) [z, fl be the fundamental matrix of system (2.5) for w E 0. Let us 

consider the quantity 

For any unit vector 1 (112[1 = i) the function 6 (T) (2.6) can vanish only at a finite 

number of points zI (i = I, . . . . k) in the interval [f, 81 ; moreover, 

I id& 6) / W,,Tj I 2 kl> 0 (kv=const) 

Theorem 2.1. Let Conditions 2.1, 2.2 be fulfilled. Then for k < k (&, is suf- 
ficiently small) the motion z” (t; 4) = z” (t; 1, t, 2, h) of system (2.1). which satisfies 

condition (2.3) is generated by the control Up(?)= w” (z; 1, t, z, X) defined by the max- 

imum condition a 

f 
Z’{X[6,r;Z,t,3,h]B(r)},w”(7)dt= 

t 
a 

=max Z’{X[6,7;1,t,~,h]B(~))m~U~e)~~ 
s INlSr. t 

(2.7) 

We can prove this theorem by means of the following iterative process. We begin by 
computing the motion z(O) (t; w) of system (2.1) for h = 0 and w = w (t) satisfying 
condition (2.2). For z = 6 ‘we obtain 

x(0)(B:w)=x(O)[0,L].+5 xcO)[s,z]B(r)u,(r)d7 

Let us set 
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p(O) II, t , x] = max 1’ (Jo) (6; w)‘), = 
IiwlKL 

a 

P.8) 

Let do) (7; I, t, x) be the control which maximizes the second term in (2.8) and let 
z(O) (a; Z, 6 I, h) be the motion of the system (2.1) for w = III(O) (T; I, t, 5) under the 

initial condition z = t, x(O) (t; E, t, x, A) = 2. Let us construct the equations in variations 

df&’ 

dz 
= A(l) (t: I, t, z, h) 6~~‘) + B (z) 6w (2.9) 

for system (2.1) along the motion z co) (r; I, t, 5, h) and denote the fundamental matrix 

of system (2.9) for 6u, 3 0 by x(r) Ifi, r; I, t, 2, h] . Then 

x(1)(2; I, t ( x ) a) = x(O) (z; I, t , 5, a) - (2.10) 
+ 

- X’l)[z, 4.1 t z h] B(Qw(‘)(E; 1, t, z)dE+ 
s 

9 , t , 
t 

+~xc1)[~,~:Z,t,x.hlB(f)(~(o)(f:~,~,~)+6u:(E)!dE 
/ 

p(l) [I, 1, x, a] = z’(x(“)(8_; I, t, 2, h)}m-- 

; - \z’~X(‘)[6,~;Z,~,~,h]B(r)},w”(~;Z,t,z)dzj 

i 
a 

“,,maa; ~z’(X(‘)[6,r;Z,r.~,h]B(t)],u:(r)d~ 
w i: 

Let the last term in (2.10) be maximized by the control w(r) (2; 1, t, I, h). Conti- 

nuing this process, we obtain the sequence of controls a~(‘) (t; 1, t, I, h) and the corre- 

sponding sequence of motions zck) (7; 1, t, Z, A). of system (2.1). When Conditions 2.1, 
2.2 are fulfilled and h < h, , the sequence a~(*) converges in measure to the control 

UP (z; I, t, 5, h) (11 w” I( < 5) which satisfies maximum condition (2.7) ; the corresponding 

sequence of motions A*) converges uniformly to the motion 20 (7; Z, t, 5, h) of system 

(2.1) generated by the control we (z; I, t, I, h) [S, 71. 
Now let us consider in the nl-dimensional space #q} of points p = {s}~ the attainabi- 

lity domain G (6, t, 2, 1L) of system (2.1) from the state x (t) = x up to the instant ‘c = ft. 
From now on we shall consider only those cases where the attainability domain 

G (6, t, ,2, A.) is convex. In such cases the quantity p 11, t, 2, h] (2.3) by definition 
describes the support function of the convex set G (13, t, 2, h). This implies the validity 
of the following statement. 

Theorem 2.2. Let Conditions 2.1, 2.2 be fulfilled and let the attainability 
domain G (6, t, 5, I,) of system (2.1) from the state I (t) = x up to the instant T = 6 be 

convex for a < a,. The domain G (8, t, x, h) for li < h, can be described as follows: 
it is the set of points Q in the m-dimensional space (~1 for which the inequality 

p [Z, r, 5, hl - l’q > 0 (2.11) 

holds for all unit vectors 1 (11 E )I = 1). The quantity p [I, t, x, Al appearing in the left 
side of inequality (2.11) can be determined from condition (2.3). 
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3. The regular case. Let the position Y [tl = Y, z [tl = z be realized by 

the instant t. Let us consider in the m-dimensional space (q} of points q = {y}, and 

q = {z}~ the attainability domains G(l)@, t, y, h) and G(2) (I?, t, z, h) for the mo- 

tions Y (z) (1.1) and 2 (r) (l.2) from the states Y (t) = Y, z (t) = z up to the instant 
r = fi under restrictions (1.33. The svmbol GL1’ (e, t, y, a) denotes the closed Euclidean 
e -neighborhood of the domain G(l) (fb, t, y,h). Let 6’ (t, y, z, h) be the smallest 

E > 0 for which Gt2) (0, t, z, I) c G!’ (8, t, y, 3L) (3.1) 
Let us suppose that the following conditions are fulfilled. 

Condition 3.1. The motions of systems (1.1) and (1.2) for h = 0 generated 
by all the possible controls subject to restrictions (1.3) under the initial conditions 

Yo E Fro, z. E rzO lie entirely in the domains rr and r2. 
Let Y(O) [6, ‘t.1 and Z(O) [e, ‘c] be the fundamental matrices of Eqs. (1.1) and (1.2) 

Let us set 

Condition 3.2. 

Es (7) (3.2) can vanish 

[t, +I ; moreover, 

El (T) = II I’ {Y(O) w, ml) win II 
E2 (IT) = 11 1’ {Z(O) w, TW2) (T)}, II 

Whatever the unit vector 1 (11 1 II = 1) 
only at a finite number of points Z, (‘land 

(3.2) 

, $e functions Et (I$, 
r’j from the segment 

(4, h = con&) 

Condition 3. 3. The attainability domains G(l) (6, t, y, h) and G(2) (fi, t, z, h) 
are convex for h < ho . 

Lemma 3.1. Let Conditions 3. l- 3.3 be fulfilled. Then the smallest e > 0 
(in the case A < ho) for which inclusion (3.1) is valid can be determined from the 

relation P(t, y, 2, h) = max {p(s) [I, t, 2, I.] - p(l) [I, t, y, h]} (3.3) 
INI=1 

where p (‘)and pc2) are the supp ort functions constructed for the pursuing and pursued 

objects, respectively, i. e. 

p(a) = max 1’ (2 (fi; u)], = I’ (2” (6; 2, t, 2, h)}m 
Ii OK, 

(3.5) 

In fact.Conditions 3.1-3.3 and Theorem 2.2 imply that the domains G!” (e, t, y,h) 
and G(s) (6, t, z, h)can be constructed as the sets of points q in the m-dimensional 
space {q) for which the inequalities 

& +p’l’ [I, t, y, Al - Z’q > 0, p@) [Z, t, z, hl - Z’q > 0 (3.6) 
are valid for every unit vector 1 (11 111 = 1). 

Inclusion (3.1) is valid if and only if every point q which satisfies the first inequality 
of (3.6) for all Z (11 I II = 1) a ls o satisfies the second inequality of (3.6). This can 
happen if and only if 

e +p”’ [I, t, y, a1 -p(Z) [Z, t, z, a1 > 0 (3.7) 
for every unit vector 1. 
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Let us take an arbitrary point q from G(a). The second inequality of (3.6) is satisfied 
by this point for all Z . But this automatically implies that this point q satisfies the first 

inequality of (3.6) for all Z, i.e. q E Gf). 

Now let us verify the necessity of condition (3.7). We can do this by assuming the 

opposite. i. e. that 

for some 1 = Z*. 
& +p’1’ [z*, t, Y, hl -p(2) [Z*, t, 2, Al c 0 (3.8) 

Let us choose a point q = q* lying on the boundary of the domain G@ for which the 

equation 
pt2’[z*, t, 2, a1 - z*’ q = 0 (3.91 

is valid. 
. , 

Such a point q* E G(2) necessarily exists by virtue of Theorem 2.1. But the point q* 

cannot lie in G,(i) , since (3.9) and (3.8) imply that 

a fp’l’ [I*, t, Y, Al - l*‘q < 0 (3.10) 

This inequality contradicts (3.6). Hence, inequality (3.8) cannot hold for any 

Z (Ii Z II = 1). 
Thus, inequality (3.7) is the necessary and sufficient condition for the fulfillment of 

inclusion (3.1). Completing the proof of Lemma 3.1. we finally note that Eq. (3.3) fol- 

lows directly from (3.7). 
In this section we are concerned with the regular case [4, 51, i. e. with the case where 

the maximum in the right side of (3.3) is attained on the unit vector I” = 2” (t, Y, z, 
A) for all those positions {t, Y, z} for which E” (t, Y, z, h) >O. 

In the regular case the extremal strategies U, and V, are defined by the sets U,* (t, 

Y, z, h) and V,* (t, Y, z, h) of the following form [4, 51. 
Definition 3.1. If a’@, Y, z, A) > 0, then the sets U,* (t, Y, z, h) and 

V,* (t, Y, z, h) consist of all those vectors u,and ve which satisfy the conditions 

Z”‘{Y [f3, t; I”, t, y, h] B(‘)(t)}, u, = (3.11) 

= II$Z”‘{Y [6, t; I”, t, y, h] B’l’(t)}m u 

Z”‘{Z [6, t; I”, t, 2, h] B’2’(t)},n v, = (3.12) 

= IgIg 1”’ (2 [6, t; I”, t, 2, h] EP) (t)}m L’ 

where Y and 2 are the fundamental matrices of the systems of equations in variations 

d8yldr = A(r)’ (7; 1, t, y, A)6y, d6zldT = At2)” (T; 1, t, z, h)6z 

constructed for Eqs. (1.1) and (l.Z),respectively, along the motions Y” (r; z~ TV Yt h) 
and z”(z; Z, t, z, h). satisfying Eqs. (3.4) and (3.5). 

Definition 3.2. If e” (t, Y, z, A) = 0, then 

u,* (4 Y, z, A) = u*, v,* (t, y, 2, a) = V” 

We note that (3.11) and (3.12) have the following implications : 
a) at instants t when 11 Z”’ {YB(l)}, 11 # 0 and 11 1”’ {ZR(2)}, 11 # 0 the sets 

U,* (t, Y, z, h) and V,* (t, Y, Z, A) consist of the single points U, [tl and v, [t], 
where 
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ue ltl = P 
(P’ {Y [ 6, t; P, t, y, 51 l?(l) (t)),)’ 
II I”’ w 16, t; Z”, t, Y, kl B(l) w, II 

u, [tl = y 
(ZO’ {Z [O, t; Z”, t, z, h] BC2) (t),,)’ 

//I”’ {Z [S, t; Z”, t, z, h] B(a) (t)), jj 

b) we assume that 

u,* (t, y, 2, h) = U”, V,(4 Y, 2, A) = v* 

at the instants when 

11 l”’ (Yu’l’), // = 0, 11 E”’ {aP~)m 11 = 0 

In the regular case the extremal strategies are permissible [4, 5, 91 and the following 

statements are valid : 
Theorem 3.1. Let Conditions 3.1-3.3 be fulfilled and let the regular case hold. 

The extremal strategy U,for J. < ha is then the optimal strategy which solves Problem 

1.1. Here (Y WI I &I, Yo, 20, u,, v) G 8” (to, Yo, 20, A) 

for every initial position y, E 1‘1” and z. E I’%’ and for every permissible realization 

0 [t] of the control u. 

Theorem 3.2. Let Conditions 3.1-3.3 be fulfilled and let the regular case hold. 
The extremal strategy I’, for h < ho is then the optimal strategy which solves Problem 

1.2. Here (Y @I I to7 307 201 % v.4 > co (to, Yo, 20, v 

whatever the initial position y, E rr” and z. E I’,’ and whatever the permissible rea- 

lization u It] of the control U. 

To prove Theorems 3.1 and 3.2 we must investigate the behavior of the derivative 

de0 [tl / dt of the function E’ [tl = E’ (t, y [tl, z [tl, h) for .a“ It1 > 0, t < 43 
along the motions y [b] (1.1) and z [t] (1.2) generated by the strategies U,, vi (or 

‘u, VA* 
To compute the derivative d$ ft] I dt of the absolutely continuous function 8” ItI 

we make use of the following considerations [8]. In the regular case the vector .!” (t, y, 

z, h) which maximizes the right side of Eq. (3.3) depends continuously on t, y, z, h 

in the domain a” (t, y, s, A)) 0 , to < t ( @, 3, sg ho, The continuity of the vec- 
tor 1” 183 implies that the derivatives 

a&O --_ aP@) [E”, t, 2, A] ap('f ]iO, t y, h] 
at at - at ’ (3.13) 

aiP &J(l) IZ”, t, y, A] aJ?T -=- apC2)[1", t, 2, h] 
aYi aYi ’ 

-zz.z 
azi az i 

exist in the domain E” > 0, to < t < 8, h ,( ho. 
Moreover, since the vector Lomaximizes the right side of (3.3). we ignore the depen- 

dence of the vector I” on t, y, z in computing derivatives (3.13). Making use of the 

rules of differentiation of the solutions y” (t; I”, t, y, A) (3.4) and 2’ (z; lo, t, z, h) 
(3.5) with respect to the initial data and with respect to the parameter GO], we can show 

that 
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= lg; Z"'{Y [6, t; Z”, t, y, h] B(l) (t)}m u - 

- Z”‘{Y [6, t; Z”, t, y, h] w(t)}, u [t] - m&x I”’ (2 [6, 2; Z”, t, z,h]R’2’(t)},U+ 

for almost all t . 

+ Z”‘(Z [6, t; i”, t, 2, h] P’(t)}, u [t] (3.14) 

Expression (3.14) implies that da” [t] / dt 4 0 for a” [tl > 0 for almost all t if the 
pursuer maintains the extremal strategy u, while the target maintains an arbitrary per- 

missible strategy I’. Conversely, if the target maintains the extremal strategy V, while 
the pursuer deviates from the extremal strategy U,, then dE” [t]/dt > 0 for a”[t] > () 

for almost all t. This implies the validity of Teorems 3.1 and 3.2. 
Theorems 3.1 and 3.2 imply that the games problem of convergence of quasilinear 

objects has a saddle point in the regular case. 

Theorem 3. 3. Let Conditions 3. l- 3.3 be fulfilled and let the regular case hold. 
The extremal strategies TJ, and V, then yield the saddle point of the convergence game, 

i. e. 

(Y [@I I tlJ, Yo7 209 u,, u) < (Y PI I t,, Yo, 20, u,, V,) < (y PI I &I, Yo, 20, u7 VA 

for every initial position y, E i?i” and z. E rzo. 

4. Exrmple. Let the behavior of the pursuer and target be described by, the equa- 
tions (‘t.l) 

y-1 = yz , Y’z = hyz2 + 241, Y’s=Yl* y’4 = U%, U12 [tl + u22 [rl G pS 

2’1 = z2, 2'3 = hQ2 + Dl, 2'3 = 17.1, 2'4 = v2, v?[t] + v22[t] ,( YZ 

and let 
Y WI = [(Yl (6) - 21 (6))3 + (y3 (6) - z3 (S))3P 

It is easy to verify that Conditions 3.1 - 3.3 hold for Eqs. (4.1). Carrying out the 

computations in accordance with the procedure of Sect. 2, we find that the support func- 
tions o(i) and p(s) are described by the equations 

P(l) = ‘/z P (8 - V + ZI (Y1 + (6 - t) Yz) + I, (Ys + (0 - 1) y4) + l/s a 2, (6 - 

-v {3Y2, + $!I, (ZI - 1, 2) (8 - t) - pa (6 - t)2 I, (5/z E, + Z33)) + . . . 

P@) = ll,y (8 - v + I, (z1 + (6 - t) z2) + I, (z3 + (6 - t)z4) + l/&Zl (6 - 

-v !3$ + 2YG (11 - 12,) (6 - t) - Y2 (0 - t)2 1, (b/t11 + 12s)) + . . . 

Let us introduce the notation zi = yi - zi, 5 = u - Y. Then 

a0 (tt Y, zl 1) = maxD (- I1 6% + (8 - t)%) - Is (1s + (6 - t) 24) - '/Z 5 (8 - t)' + 

+ h. '/e 1, (6 - 1)3 [3z2, - 3y2, + 2 (YZ, - pyz) (11 - 22,) (8 - t) - 1, (6 - (4.2) 

A)* (l? - 9) (5/a I, + Ps)] + . ..j (D = z,2 + z2, = 1) 

For h < h, the attainability domains of objects (4.1) are convex and nearly disk- 
shaped. Hence, for those positions where EO > 0 the maximum in the right side of(4.2) 
is attained on the unique vector ZO. This means that the regular case holds. Here 

II” = 11(O) + hZP + . . . ( 13” = zp + hls’l) + . . . 

p) =- 
s1+ (6-- 2) x2 

[(a+ (6 -t) X2 )Z + (x3 + (* -t) ~1)211" 
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&JO) =- zs+ (6 - q24 

[(a+ (e - t)za)* + (2s +(6 - t)z4)q'= 

Ql) =' 
z*("+zphb - zl("hJ,) 

[(a+ (6 - t)22)2 + (53 + (6 - t) 24)"]"' 

l&l) = 
21(O) (11wv* - Iswf1) 

[(Zl + (6 - t) 22)2 + (23 + (6 - t) zpp 

Nl = '/4 (6 - t)a[ 3 (232 - y22) + 2 (Y4 - pyg) (6 - t) (2P) - 

- (zpy) + 15/2 (p2 - Y2) (h(O))2 (6 - ty + 2 (p - VS) h(O) (I*(O))2 (6 - t)‘] 

Nz = l/z (6 - t)’ [-219(O) (YZZ - pyz) + (p? - ~2) l~(~)ls(~) (6 - t)] 

The extremal strategies U, and V, can be described as follows : 
1) if E’ (t, y, z, h) > ?,then the sets U,* (t, y, z, 1) and V,* (t, y, z, h) consist of 

the single points uc [tl and v, [t], where 

Uel [t] = /b [11(O) + hZl(‘) + . . .I, Uel [t] = v [l&O) + IA(l) + . . .] 

ue2 [ t1 = p {23(O) + h [Is 0) - z1(9p ((6 - t) yz + 1/$dp (6 - t)s)] + . . .} 

ve,[t]=v(.1$~)+?u[z3 (1) - Zl(O)~S(O) ((6 - t) zz + '/svzl(o) (6 - t)y] + . . .} 

2) if so (t, y, z, h) = 0, then 

u,* 0, Y, z, h) = U’, v,* (t, y, 2, n) = v* 

The author is grateful to N. N. Krasovskii for his comments and valuable suggestions. 
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